

Thermomechanical Measurements for Energy Systems (MENR)

Measurements for Mechanical Systems and Production (MMER)

A.Y. 2015-16

Zaccaria (Rino) Del Prete

Length and displacement measurement

Many instruments are available to measure length and displacement in modern technology ...

The most ancient is the *graduated ruler*:

Rulers have an approximation of 1 mm, while **Vernier Calipers** have an approximation of 0,1 mm (over an average range of 200 mm) ! If you need more resolution, you have to use the *Micrometer*, which has an approximation of 0,01 mm (over a range of 25 mm) !

For small length the *Vernier Caliper* is used in the Lab:

It subdivides 9 mm in 10 parts, each of which is therefore 0,9 mm long. When measuring, you count the first *mobile notch* coinciding with any *fixed notch* and you add that "tenth of millimeter" (A) to your reading !

**Sleeve* is the most prevalent name. May also be called the *barrel* or *stock*. **Aka *lock-ring*. Some mics have a *lock lever* instead. There are 50 notches on the rotating screw (*thimble*), therefore for every notch the screw advances:

which is also the approximation of the instrument ! Of course the range is limited by the instrument screw opening ...

However in the industry, almost all the *displacement transducers* are <u>electrical</u>:

$$L \longrightarrow \begin{array}{c} \text{ELECTRICAL} \\ \text{TRANSDUCER} \end{array} \longrightarrow v, i$$

They are generally based on the <u>Ohm's law</u>: $V = Z \cdot I$ With the impedance: $Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ We have already seen the *potentiometers*, where $Z = R = \rho \cdot \frac{\iota}{s}$

$$e_o = \frac{e_{ex}}{l} \cdot x$$

 $S = \frac{de_o}{dx} = \frac{e_{ex}}{l}$ with a *constant sensitivity* expressed in [V/m]

For *rotational potentiometers* we have:

ase

Slip ring

Slip-ring contact

Formed into circle

Potentiometer displacement transducer.

Wiper

(slider)

 x_i, θ_i

Capacitive transducers are all based on the fundamental physical relationship: $C = \varepsilon_0 \varepsilon_r \frac{S}{d}$

We can vary the "distance d" but then we did <u>not</u> get a *constant sensitivity*:

$$\frac{dC}{d(d)} = -\varepsilon_0 \varepsilon_r \frac{S}{d^2}$$

or we can vary the "plates surface S" (good for rotating capacitor transducers) and we get a *constant sensitivity*:

$$\frac{dC}{dS} = \varepsilon_0 \varepsilon_r \frac{1}{d}$$

or we can even vary the "dielectric constant ε_r " and we get a constant sensitivity as well:

$$\frac{dC}{d\varepsilon_r} = \varepsilon_0 \frac{S}{d}$$

Inductive transducers are a bit more complex, for example in the *variable reluctance transducer* the inductance

 $V = Z \cdot I \cong j\omega L \cdot I = j\omega \frac{N^2}{\Re_{-}} \cdot I = j\omega N^2 \mu_0 \mu_a \frac{S}{l_a} \cdot I \qquad \text{with a constant sensitivity}: \qquad S = \frac{\Delta I}{\Delta x} = \frac{2V_{eff}}{\omega N^2 \mu_0 \mu_a S}$

 $L = \mu_0 \mu_r \frac{N^2 S}{I}$ is changing because of a variation of the magnetic circuit reluctance $L = \frac{N^2}{\Omega^2}$ where $\Re = \frac{l}{\mu_0 \mu_r S}$ and it is: $\Re = \Re_f + \Re_a$ Because $\mu_f \ge 10000$ while $\mu_a \cong 1$ even if $l_f > l_a$ it basically results : $L \cong \frac{N^2}{\Re}$ If we supply the coil with a "c.a. voltage" : $V = V_0 sen\omega t$

we can apply $V = Z \times I$ where $Z = R + j\omega L \cong j\omega L$ and the graduation curve is: $I_{eff} = \frac{2V_{eff}}{\omega N^2 \mu_e \mu_s} \cdot x$

There are also *simpler inductive transducers* which do not need a voltage supply, because they are based on

Sospensione

elastica

permanent magnets and on the Faraday's law:
$$e_u = -N \frac{d\Phi}{dt} = -N \frac{d\Phi}{dx} \frac{dx}{dt} = -N \frac{d\Phi}{dx} \dot{x}$$

These are all *contactless* sensors !

Type (b) transducers are *reversible* and can become (with an appropriate design) *loudspeakers* !

However, the output signal is proportional to the *velocity of the displacement* \dot{x} and needs to be integrated ...

The graduation curve is:

$$e_u = -Blv = -Bl\dot{x}$$

A typical application of this kind of transducers is the *microphone pick-up* ...

Proximity sensor comparison

Technology	Sensing range	Applications	Target materials
Inductive	<4-40 mm	Any close-range detection of ferrous material	Iron Steel Aluminum Copper etc.
Capacitative	<3-60 mm	Close-range detection of non-ferrous material	Liquids Wood Granulates Plastic Glass etc.
Photoelectric	<1mm- 60 mm	Long-range, smalll or large target detection	Silicon Plastic Paper Metal etc.
Ultrasonic	<30 mm- 3 mm	Long-range detection of targets with difficult surface properites. Color/reflectivity insensitive.	Cellophane Foam Glass Liquid Powder etc.

courtesy of "machinedesign.com"

The most important inductive transducer is the Linear Variable Dispalcement Transducer (LVDT)

One primary and two secondary coils are wrapped as in figure (a). A high permeability ($\mu_r > 10000$) inner nucleus (b) picks up the displacement and engages the magnetic field produced by the primary coil ... Input voltage E_i at the primary coil is, of course, a.c. Because the secondary coils are winded series-opposing the resulting output voltage E_0 will be differential:

$$E_{o} = E_{1} - E_{2} = \left(M_{1p} - M_{2p}\right) \cdot \frac{di_{p}}{dt}$$

with the mutual inductance coefficients $M_{ip} = \sqrt{L_i L_p}$

and
$$L_i = \mu_o \mu_r \frac{N^2 S}{l}$$
 with i = 1, 2

Note that the relationship above is valid for "every time instant" and is also preliminary form of the <u>LVDT</u> <u>graduation curve</u> !

The right figure explains what is happening when the ferromagnetic nucleus moves from the *central null position,* <u>copying</u> the external displacement. It can be easily seen that the LVDT is an electric "zero method" transducer !

LVDT are <u>**not**</u> linear transducers but they can be considered liner in a limited range, near the central null position !

To read the output voltage, LVDT need a signal manipulation circuit that provides for the *rectification of the signal* E_0 and a *phase discriminator* to understand if the displacement is happening towards the left or the right side !

eab

Dynamic example:

LVDT with a 10g nucleus, measuring a displacement of ± 1mm at 1 kHz

Displacement: $x(t) = X_0 sen\omega t$ Acceleration (of the nucleus): $\ddot{x}(t) = -\omega^2 X_0 sen\omega t = \omega^2 X_0 sen(\omega t - \pi)$ Whatever is the displacement we are measuring, to correctly pick up the ± 1mm amplitude at 1kHz frequency, the external displacement must apply to the nucleus in every time instant a force $F(t) = m\ddot{x}(t) = m \cdot \omega^2 X_0 sen(\omega t - \pi)$ which is maximum at the inversion points: $F_{\text{max}} = m \ddot{X}_0 = m \cdot \omega^2 X_0$ which actually is ...

$$F_{\text{max}} = 10^{-2} kg \times 39, 4 \cdot 10^{6} s^{-2} \times 10^{-3} m = 394 kgms^{-2} \approx 400 N$$

with $\omega = 2\pi f = 6,28 \times 10^3 s^{-1}$ and $X_0 = 10^{-3} m$ the *dynamic loading effect* ...

Digital ENCODERS

Encoders are "native digital" motion transducers They are simply made by coupling a notch trace and a notch reader in relative motion by each other. The distance δx (<u>pitch</u>) between two consecutive notches is the fundamental design data of the encoder.

In *tachometric encoders* we just read the number of notches the sensor has counted and we have the distance: $x = n \times \delta x$. The *number of notches counted in each time unit* gives us also the velocity of the motion ! *Spatial resolution* is equal to $\delta x/2$ but NO information about <u>motion verse</u> is provided by such transducer !

Incremental encoders can overcome this limit by using two notch traces, staggered each other with a pitch of $\delta x/4$.

This is also the new *enhanced resolution* of the transducer.

NO information about the <u>absolute position</u> is provided by such transducer !

Readout lamps, sum of readings gives displacement Absolute encoders make a direct association between the actual position and a binary code ! They have as many notch

traces (and readers) as the bit number that is needed !

Translational and rotary encoders.

Black → Common conductor White → Insulator The *natural binary code* is not ideal for *encoders* because there are several transitions for which more that one bit is changing its state simultaneously ! This is not guaranteed in real devices and it can cause noise ... Therefore, encoders employ the *grey binary code* where, for every step, there is always only one bit at a time that changes its state !

Absolute Encoder Simplified Structure